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The paper is based on determining the reaction pressure on the diaphragm of a condenser microphone

by integrating numerically the frequency domain Stokes system describing the velocity and the

pressure in the air domain beneath the diaphragm. Afterwards, the membrane displacement can be

obtained analytically or numerically. The method is general and can be applied to any geometry of

the backplate holes, slits, and backchamber. As examples, the method is applied to the Bruel & Kjaer

(B&K) 4134 1/2-inch microphone determining the mechanical sensitivity and the mechano-thermal

noise for a domain of frequencies and also the displacement field of the membrane for two specified

frequencies. These elements compare well with the measured values published in the literature. Also

a new design, completely micromachined (including the backvolume) of the B&K micro-electro-me-

chanical systems (MEM) 1/4-inch measurement microphone is proposed. It is shown that its mechani-

cal performances are very similar to those of the B&K MEMS measurement microphone.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3652853]

PACS number(s): 43.38.Kb, 43.38.Bs [AJZ] Pages: 3698–3705

I. INTRODUCTION

Predicting the response of a condenser microphone due

to an incoming sound wave in terms of its geometrical and

material properties is an almost century old problem. The

difficulties in its approaches are related especially with the

coupling of the vibration of the membrane with the oscilla-

tions of the underlying air layer. While the general motion

of a membrane supported on a rigid circular frame at its

periphery, driven by a given surface force is known [see

Chapter 9 in the book by Rayleigh (Ref. 1, and the referen-

ces therein)] the fluid motion in the air domain (including

the gap, holes, slit and backvolume) is more difficult to

describe analytically.

The first general approaches of the condenser micro-

phone analysis were based on a simplified model using some

lumped elements by Wente2 in 1917 and Crandall3 in 1918

using simplifying assumptions about the pressure and parti-

cle velocity in the air domain, as have been considered by

Warren et al.4 in their paper published in 1973.

A second approach was based on using the Navier-

Stokes (N-S) system for describing the motion of the viscous

fluid (air) coupled with the vibrating membrane. Thus,

Robey5 in 1954 tried to solve the N-S system in a cylindrical

domain (the underlying air) but used the unphysical bound-

ary condition of vanishing pressure on the external circular

cylindrical surface. Petritskaya6,7 in 1966–1968, improved

Robey’s solution by considering the appropriate boundary

condition of vanishing fluid velocity on the external circular

surface. Also, she accounted for the presence of openings in

the backplate. Zuckerwar8 in 1978 made two key assump-

tions which enabled him to simplify the analysis and obtain

a closed form solution. He assumed that the membrane

displacement is axi-symmetrical and that the reaction pres-

sure is relatively insensitive to the shape of the diaphragm.

The excellent agreement between the theory and experiment

in the case of the Bruel & Kjaer (B&K) 1-in. and 1/2-in

microphones shows that Zuckerwar’s theory describes accu-

rately the microphone behavior. A complete analysis for the

B&K type 4146 1-in. microphone is also included in Ref. 9.

Tan and Miao10 in 2006 reviewed the theory of condenser

microphones and proposed a new analytical modeling

method for the B&K MEMS condenser microphone. The

theoretical results obtained by this method were found to be

in very good agreement with the experimental results

reported in the case of a B&K MEMS microphone in

Ref. 12. Very recently, Lavergne et al.13 developed a theory

for electrostatic acoustical transducers used in environments

and/or frequency ranges which are significantly different

from those for which they have been designed according to

the previous described work. By using a lubrication-type

approximation they obtained a Helmholtz-type equation for

the pressure in the gap and used a similar equation for the

pressure in the backchamber. Both equations contain delta

functions as forcing terms, meant to describe the effect of

the holes in the backplate and slit around the backplate.

In this paper, we propose a new approach based on a nu-

merical solution of the Navier-Stokes system for the air do-

main Dair composed of the gap, the holes and slits in the

backplate, the slit around the electrode and the backchamber.

Thus, the nonlocal coupling of the pressure in the gap with

the backchamber pressure through the holes in the backplate

is taken into consideration in a natural way without any need

to use the function defined by Petritskaya in Ref. 6.

The geometry used more often for building microphones is

that of an axi-symmetrical backplate with regular azimuthally

distributed circular holes. However, we can mention several

cases approaching more general geometries. Thus, Skvor in
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Refs. 14 and 15 reported a theoretical and experimental study

of a microphone having a nonplanar backplate. Also, Ref. 16

gives a simplified model of a microphone with square mem-

brane and a nonplanar backplate.

The method presented in this work can be applied to

general geometries of the backplate, holes, slits and back-

chamber. In the examples in this paper we consider firstly

the case of a 1/2-inch B&K microphone with an axi-

symmetrical backplate having regular azimuthally distrib-

uted circular holes. Another example, a MEMS microphone,

involves an octagonal backplate and square holes having still

a sectorial periodicity. In the general case, the numerical

procedure has to be applied to the whole diaphragm and not

to only to a slice of it. The only difference is that the number

of degrees of freedom will be much larger.

II. THE MEMBRANE EQUATION. THE ZERO ORDER
SOLUTION

A. The membrane equation

Consider the cylindrical system of coordinates (r, h, z) hav-

ing its origin at the center O of the rigid circular frame bounding

the membrane, and Oz-axis perpendicular to the equilibrium

position of the membrane and directed outwardly. The radius of

the frame is denoted by a and the origin of the azimuthal coordi-

nate h is set at the center of a hole in the backplate.

In the case of harmonic time variation eixt of the incom-

ing wave, the motion of the diaphragm is described by the

membrane equation which in cylindrical coordinates can be

written as

r2gðr; hÞ þ k2gðr; hÞ ¼ � pi

T
þ pðr; h; 0Þ

T
; 0 < r < a

(1)

Here, g (r, h) is the vertical membrane displacement and pi

the incident sound pressure assumed uniform (constant) over

the membrane surface. Also, p (r, h, 0) denotes the reaction

pressure at the membrane surface, and k is the wave number

of sound in the membrane,

k ¼ x
c
; c ¼

ffiffiffiffiffiffi
T

rM

r
(2)

where rM is the membrane mass surface density, T the mem-

brane tension and c denotes the sound speed in the mem-

brane. The reaction pressure p(r, h, 0), loading the

diaphragm, is the pressure due to the underlying air layer

squeezed between the membrane and backplate. Equation

(1) has to be completed by the boundary condition

gða; hÞ ¼ 0 (3)

stating that the membrane is supported by the rigid circular

frame at its periphery.

B. The zero order solution for the membrane
displacement

The zero order solution for the diaphragm motion is

obtained by neglecting in Eq. (1) the reaction pressure. The so-

lution of the problem of a circular membrane driven by the con-

stant pressure pi due to the sound field can be found in the book

by Blackstock17 (see p. 403). In our case it can be written as

gð0Þ ¼ pi

k2T

J0ðkrÞ
J0ðkaÞ � 1

� �
(4)

The very same solution enters also as the first term in the so-

lution given by Zuckerwar8 in Eq. (17) and by Lavergne

et al.13 in Eq. (11a). We note that this solution is not influ-

enced at all by the presence of the backplate and, conse-

quently, does not depend on the azimuthal coordinate h.

III. THE NAVIER-STOKES SYSTEM FOR THE AIR
DOMAIN Dair THE FIRST ORDER APPROXIMATION
OF THE REACTION PRESSURE

A. The linearized compressible Navier-Stokes system

The motion of the air in the domain underneath the mem-

braneDair composed of gap, holes and slits set in the backplate,

peripheral slit surrounding it and backchamber is described by

the Stokes approximation of the N-S compressible system writ-

ten in the case of time harmonic dependence as

ixq0v ¼ �rpþ l r2vþ 1

3
rr � v

� �
(5)

q0r � v ¼ �ixq (6)

and the equation of state

p ¼ qc2
T (7)

Here, v is the air particle velocity, q0 is the static air density,

q is the time-varying air density, and cT is the isothermal

speed of sound in air. According to Crandall3 the use of the

isothermal sound speed cT is appropriate for the gap region.

The boundary conditions associated with the system,

Eqs. (5)–(7), are

trðr; h; 0Þ ¼ thðr; h; 0Þ ¼ 0; tzðr; h; 0Þ ¼ ixgðr; hÞ (8)

along the membrane. Beside these, the velocity is zero,

v S ¼ 0j (9)

on the all immobile solid surface boundaries S of the fluid

domain (no slip condition).

The equations describing the motion of the diaphragm,

Eq. (1), and fluid flow, Eqs. (5)–(7), are coupled. Thus, the

fluid motion enters in the membrane equation by the reaction

pressure p(r, h, 0) while the diaphragm displacement influen-

ces the fluid flow by means of the boundary condition,

Eq. (8). To solve the problem we consider some iterations.

B. The first order approximation for the reaction
pressure. Computational methodology

For obtaining the first approximation for the reaction

pressure we use in the third boundary condition, Eq. (8), the
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zeroth order approximation for the diaphragm displacement

g0 given by formula, Eq. (4). Thus, we write this boundary

condition as

t0
z ðr; h; 0Þ ¼

ix
k2T

pi
J0ðkrÞ
J0ðkaÞ � 1

� �
(10)

We consider the case where the stationary backplate,

containing the holes, can be divided into a number of N0

identical circular sectors which can be obtained by rotation

of the basic sector by an angle equal to a multiple of 2p=N0:
As the forcing sound pressure is assumed constant over the

diaphragm, the boundary conditions for each circular sector

are the same. Consequently, the pressure will be a periodic

function with respect to the azimuthal angle h of period

2p=N0. Thus, the microphones B&K 4134 (1/2 in.) (top view

in Fig. l) and B&K 4146 (1 in.) studied by Zuckerwar in

Refs. 8, 9, and 13 and the microphone type WS2 presented

in Ref. 11 have N0¼ 6 while the B&K MEMS (1/4 in.) mea-

surement microphone described in the paper by Scheeper

et al.12 has N0¼ 4. Similar cases were considered by Petrit-

skaya6 and Tan and Miao10 Therefore, it is sufficient to

determine the pressure in a basic sector. The modeled do-

main can be further reduced by accounting for the symmetry

of the basic sector.

Finally, we need to build a finite element method (FEM)

model only for the air domain D0
air lying under the upper half

of the basic domain of diaphragm D0¼ {(r, h, 0)|0< r< a;

0< h�p/N0;}. Inside the domain D0
air , Eqs. (5)–(7) prove

true while on the surface @D0
air the boundary conditions will

be: symmetry conditions on the planes underneath the straight

line segments on the boundary of the domain D0, zero veloc-

ity on any part of solid boundaries of holes, slits and back-

chamber and tr(r, h, 0)¼ th (r, h, 0)¼ 0 and tz(r, h, 0) equal

to the value given by relationship, Eq. (10), on the boundary

of the air domain corresponding to the membrane.

In this section, we will develop a numerical model based

on the finite element method (FEM) for determining the

reaction pressure on the diaphragm. The frequency domain

linearized N-S, Eqs. (5)–(7) were implemented in the com-

mercial finite element method code, COMSOL Multiphysics

v.3.5. Thus, we used in the MEMS module in the program

Non-isothermal Stokes Flow. The steady-state analysis corre-

sponds to the system, Eqs. (5), (6), and (7), where x ¼ 0: In

order to take into consideration the term, ixq0v in Eq. (5)

and the term ixq in Eq. (6), we introduce the corresponding

terms in the weak form of the Stoke’s system of equations

implemented in COMSOL. A mesh of unstructured tetrahe-

dral elements using Lagrange�P2P1 interpolation polyno-

mials with a regular refinement at the gap was used. The

resulting system of equations was solved with the parallel

direct linear solver PARDISO. All the numerical work has

been performed on a workstation having 96 Gbyte RAM and

24 cores. The typical time consumption for one frequency

and a system of 123 295 degree of freedom (DOF) was

around 50 s.

The frequency limitation of this approach is given by

the condition that the number of DOF to be larger than

NDOF ¼ 1728�model volume measured in wavelength

cubed. This condition is a strengthening of the requirement

to have at least two DOF (practically 10–12) per wavelength

in the direction of propagation (see Ref. 19). In our case the

solution obtained is valid up to 250 kHz.

As a result of computation we obtain pcalc and hence the

reaction pressure on the membrane basic domain D0 can be

written as

pð1Þ ¼ pip
calc:

IV. THE FIRST ORDER SOLULTION FOR THE
DIAPHRAGM DISPLACEMENT

Once the first order approximation p(1) (r, h) of the reac-

tion pressure of the diaphragm is determined, the first order

displacement results by solving the equation

r2gð1Þðr; hÞ þ k2gð1Þðr; hÞ ¼ � pi

T
þ pi

T
pcalcðr; h; 0Þ (11)

with the perimeter condition

gð1Þða; hÞ ¼ 0: (12)

In this section, we present two methods for obtaining the dia-

phragm displacement: an analytical solution based on the

work of Rayleigh1 and a numerical solution using the FEM

method.

FIG. l. (Color online) (a) Top view of the B&K 4134 microphone after

removing the diaphragm. D0 is the basic domain and D0 its symmetrical do-

main. (b) The air domain D0
aircorresponding to the diaphragm domain D0.
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A. The analytical solution

As an analytical solution to this problem we will apply

the method given by Morse and Ingard18 (Section 9.3; pp.

543–544). Thus, in the case of a circular membrane, the

even part, with respect to h, of the diaphragm displacement

can be written as

gð1Þðr; hÞ ¼ pi

k2T

J0ðkrÞ
J0ðkaÞ � 1

� �
þ pi

pa2T

�
X
m;n

2� dm;0

k2 � k2
mn

� � gmnðr; hÞ
½J 0mðamnÞ�2

�
ð2p

0

ða

0

pcalcðr0; h0Þgm;nðr0; h0Þr0dr0dh0; (13)

where

gm;nðr; hÞ ¼ Jm
amn

a
r

	 

cos ðmhÞ; (14)

and the constants kmn are given by relationships

JmðamnÞ ¼ 0; kmn ¼ amn=a (15)

by means of the zeros of the Bessel function Jm(r).

The average displacement of the membrane enters into

several parameters. To determine it, we write

gð1Þðr;hÞ
D E

� 1

pa2

ð2p

0

ða

0

gð1Þðr;hÞrdrdh

¼ pi

k2T

J2ðakÞ
J0ðakÞþ

2pi

pa2T

X1
n¼0

1

a0nJ1ða0nÞk2� k2
0n

�
ða

0

ð2p

0

pcalcðr;hÞJ0ðk0nrÞrdrdh (16)

Remark 1. Equation (16) was proven for the case of dia-

phragms having a symmetry axis (Ox). As the integral of

“sine” terms cancels out it is also valid in the case of micro-

phones having circular diaphragms and arbitrarily shaped

backplates.

In the case of diaphragms having a symmetrical pattern

with N0 circular sectors the integral can be written asð2p

0

ða

0

pcalcðr; hÞJ0ðk0nrÞrdrdh

¼ 2N0

ð
D0

ð
pcalcðr; hÞJ0ðk0nrÞrdrdh (17)

B. A numerical solution

Once the reaction pressure on the membrane is known,

the first order displacement of the diaphragm g1 (r, h) can also

be obtained by numerical integration of the Helmholtz Eq.

(11). This can be performed by using the Multiphysics module

of the COMSOL finite element package by coupling it with

the program developed for determining the pressure on the di-

aphragm. For this we considered a nonstructured mesh of the

2D domain D0 containing a total of 12 480 triangles and have

used a Lagrange-quadratic interpolation. The resulting system

was solved again by using the PARDISO direct solver. Being a

2D problem the time required for this calculation is signifi-

cantly smaller than that necessary for determining the reaction

pressure. After determination of the first order displacement

its average value over the diaphragm is

g1ðr; hÞ
� �

¼ pi
2N0

pa2

ð ð
D0

g1ðr; hÞdS � pi

pa2
JðxÞ; (18)

where by J(x) has been denoted the integral of the first order

displacement over the membrane surface:

JðxÞ ¼ 2N0

ð ð
D0

gð1Þðr; h;xÞdS: (19)

V. ACOUSTICAL LUMPED ELEMENTS

A microphone can be viewed as a complex acoustical

electromechanical system having tightly coupled acoustical,

electrical and mechanical elements. A very much used mod-

eling method for determining the performance of a micro-

phone is the lumped-element approach in which simple

analytical (or numerically determined) expressions for mass,

compliance and damping have their equivalent correspond-

ing electrical counterparts in inductance, capacitance and re-

sistance, respectively. A standard representation for a

capacitive sensor including the radiation impedance, the me-

chanical damping, stiffness and mass, and electrical charac-

teristics as capacitance (including the parasitic one) and

electrical resistance can be found in the book by Kinsler

et al.20 A simplified acoustical lumped-element equivalent

circuit of the microphone is shown in Fig. 2. It includes the

membrane mass MM and compliance CM and also the resist-

ance RA and the compliance CA of the air in gap, holes and

backchamber.

Finally, the mechanical performance of a condenser

microphone consists of two parts: the mechanical sensitivity

and the thermal noise.

1. Mechanical sensitivity

The membrane parameters can be written directly as

FIG. 2. The simplified acoustical lumped-element equivalent circuit of the

microphone.
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MM ¼
4rM

3pa2
the diaphragm mass; (20)

and

CM ¼
ðpa2Þ2

8pT
the diaphragm compliance: (21)

At frequencies that are below the first resonant frequency of

the diaphragm the equation of the equivalent circuit of the

microphone can be written as

ðixÞ2MM þ ixRA þ
1

CA
þ 1

CM

� �
¼ 1

pa2MmðxÞ
: (22)

The source term in the right hand side of Eq. (22) contains

the mechanical sensitvity defined as

MmðxÞ ¼
gð1Þðr; hÞ
� �

pi
� JðxÞ

pa2
: (23)

Once mechanical sensitivity known, the real part of

Eq. (22) determine the air compliance as

CAðxÞ ¼ real
1

JðxÞ

� �
þ 4rMx2

3pa2
� 8pT

ðpa2Þ2

" #�1

: (24)

Further on, the imaginary part of Eq. (22) yields the air

resistance

RAðxÞ ¼
1

x
imag

1

JðxÞ

� �
: (25)

Finally, the quality factor Q is given by formula

Q ¼ 1

RA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MM

1

CM
þ 1

CA

� �
:

s
(26)

A. Mechanical-thermal noise

The random movement of the molecules in a gas at a cer-

tain temperature and surrounding a mechanical structure leads

to random fluctuations in the energy transfer between struc-

ture and damping gas, which is generally referred to as

mechanical-thermal noise. According to Gabrielson,21 any

mechanical system in thermal equilibrium can be analyzed for

mechanical-thermal noise by adding a force generator along-

side each damper. Because a thermal equilibrium between the

mechanical device and the surroundings is assumed, the

energy lost towards the environment through the dissipative

friction (damping coefficient) must equal on average the

energy gained through the noise force. In the case of a micro-

phone the Nyquist theorem21 relates the spectral density of

the fluctuating force to the air resistance RA

Ff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kbToRA

p
½N=

ffiffiffiffiffiffi
Hz
p
�; (27)

Or the pressure spectral density of the mechanical-thermal
noise to the acoustic resistance Racs¼RA/S2 (where S is the

area of the active force):

Pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kbToRacs

p
½N=

ffiffiffiffiffiffi
Hz
p
�; (28)

where kb is the Boltzmann constant (1.38� 10–23 J/K) and

To is the absolute temperature (K). The background noise

mean square pressure (A-weighted) of the mechanical noise

can be computed as

N2
f ¼

ðf2

f1

4kbToRAA2ðf Þdf ; (29)

where Aðf Þdenotes the function of the A-weighted filter, and

f1¼ 10 Hz, f2¼ 20 kHz.

VI. CALCULATION OF MECHANICAL PERFORMANCE
OF SOME MICROPHONES

In this section, we shall compute the mechanical per-

formance of the B&K 4134 and also of a new design for a

MEMS microphone.

A. The B&K 4134 (1/2 in.) microphone

The arrangement of acoustical slit and holes in the back-

plate of the B&K microphone type 4134 is shown in Fig.

l(a). Figure l(b) shows the corresponding air domain D0
air

used for determining the reaction pressure. The mechanical

parameters of the membrane, the values of geometrical pa-

rameters of the microphone and the thermo-acoustical pa-

rameters of the air are those given by Zuckerwar.8 The

membrane has a radius a ¼ 4.45[mm], the thickness 5[lm]

the surface density rm ¼ 0.0445[kg/m�2] and the tension

T¼ 3162[N/m]. Also, the radius of the circular backplate is

3.61[mm], the radius of the six holes equals 0.51[mm], the

distance of the centers of the holes to the membrane center

equals 2.03[mm]. The length (depth) of a hole is 0.84[mm]

while the length of the peripheral slit is 0.3[mm]. Finally,

the gap (the distance between average position of membrane

and backplate) equals 20.77[lm] and the backchamber vol-

ume is 1.264� 10�7[m3]. In all the calculations the density

of the air is considered to be q0 ¼ 1.2[kg/m3] its viscosity

l¼1.89� 10�5[kg/m/s�3] and the isothermal sound of speed

in air cT¼ 290[m/s].

Figure 3 compares the sensitivity obtained by using the

reaction pressure obtained numerically and the two methods

for solving the membrane equation: analytical method given

in Section A (continuous line) and the numerical method of

Section B (line with circles) with the measured values taken

from Ref. 8 and shown in the two figures as empty circles.

Figure 3(a) shows the variation of amplitude sensitivity with

frequency of the incoming wave and Fig. 3(b) plots the vari-

ation of phase response with the same frequency. In both

cases the analytical and numerically obtained results are

very close. We note also that the Mechanical Sensitivity

determined numerically is overdamped as compared with the

measured values.
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Finally, by using the given formulas, we provide evalua-

tion of the thermal noise. Thus, Eq. (25) yields the value Racs

¼ 1.2� 108 [Ns/m5] for the mechanical resistance and hence

the value 1:39� 10�6½P=
ffiffiffiffiffiffi
Hz
p
� for the pressure spectral den-

sity of the mechanical-thermal noise. This gives a mechani-

cal thermal noise of 17.9[dB (A)]. This compares well with

the values 19.7[dB (A)] corresponding to Zuckerwar’s pa-

per,8 18.9[dB (A)] given by Tarnow in Ref. 22, 18.3[dB (A)]

found by Tan and Miao in Ref. 23, and the value 18.0[dB

(A)] given in Ref. 24.

B. A new design of a MEMS microphone

The 1/4-inch, MEMS measurement microphone, of con-

denser type, developed by B&K12 in 2003, has a very low

level of mechanical-thermal noise comparable to the noise

level corresponding to a 1/2-inch microphone discussed in

the previous subsection. This low level of mechanical-

thermal noise is ensured by a 20 [lm] gap between the

diaphragm and the square backplate (which measures 2.8

� 2.8[mm2]) the slit arround the backplate and the four

acoustic square holes perforated in the backplate. Also, the

high sensitivity of the microphone is achieved by using a

quite large diaphragm for a MEMS microphone of

� ¼ 3:9 mm½ �: (The diaphragm radius is also limited by the

design constraint of a 1/4-inch microphone housing). The

micromachined diaphragm has the thickness 0.5[lm], the

mass surface density rm¼ 0.0015 [kg/m2] and tension

T¼ 170[N/m]. Each square hole has the side length 80[lm],

the distance of the centers of the holes to the membrane cen-

ter equals 0.55[mm], and the depth (the backplate thickness)

equals to 150[lm]. The microphone silicon chip contains

the diaphragm and backplate and it is mounted onto a ring

of silicone glue. For packaging and testing purposes, the

FIG. 3. (Color online) (a) Amplitude (dB) of the mechanical sensitivity of the B&K 4134 microphone, as a function of frequency, calculated analytically (con-

tinuous line) and numerically (line and circles) and the measured values (scattered empty circles). (b) The phase of the mechanical sensitivity of the micro-

phone B&K 4134, as a function of frequency, calculated analytically (continuous line) and numerically (line and circles) and measured values (scattered

empty circles).

FIG. 4. (Color online) (a) Top view of the proposed MEMS design after

removing the diaphragm. D0 is the basic domain and D0 its symmetrical do-

main. (b) The air domain D0
air corresponding to the diaphragm domain D0

for proposed MEMS design.

FIG. 5. (Color online) Amplitude (dB) of the mechanical sensitivity of the

proposed microphone, as a function of frequency, calculated numerically

(continuous line) and the measured values (scattered empty circles).
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microphone is housed in a 1/4-inch microphone titanium

body. This gives a backchamber volume of 76[mm3] which

corresponds to a height of 6.4 [mm].

For determining the mechanical performance of the

microphone, by using the method developed by Zuckerwar,

Miao et al.,10 considered a model with a circular backplate

and round holes. The analysis in paper10 shows also that by

modifying the gap to 10[lm] it is possible to build with the

same technique new MEMS microphones for nonmeasure-

ment applications.

In this section, we investigate the mechanical properties

of a microphone completely micromachined, the silicon chip

including also the backchamber. The diaphragm has the ra-

dius a ¼ 1.95[mm], the octagonal backplate (see Fig. l in

Ref. 12 and Fig. l(b) in Ref. 10) has the large sides length

equal to 2.2[mm] and the distance between two opposite

large sides of 2.8[mm] [Fig. 4(a)]. It contains four square

acoustical holes which measure 80� 80[lm2]. The deep of

the backchamber equals 0.8[mm]. Due to periodicity and

symmetry the bounary-value problems have to be solved for

the domain D0 in Fig. 4(a) (for the diaphragm displacement)

and the 3D domain shown in Fig. 4(b) for the pressure under

the diaphragm. For both boundary value problems numerical

methods have been applied.

The normalized sensitivity obtained by using the ana-

lyzed MEMS condenser microphone is plotted in Fig. 5, ver-

sus frequency of the incoming wave, as a continuous line.

In the same figure the scattered empty circles correspond to

the measured response of the MEMS measurement micro-

phone given in Fig. 9 in Ref. 12. The good agreement of the

FIG. 6. (Color online) (a) Measured displacement field of the membrane of B&K 4134 microphone at 40 kHz reproduced from the paper by Lavergne et al.13.

(b) The calculated displacement field of the membrane of B&K 4134 microphone at 40 kHz.

FIG. 7. (Color online) (a) Measured displacement field of the membrane of B&K 4134 microphone at 70 kHz reproduced from the paper by Lavergne et al.13

(b) The calculated displacement field of the membrane of B&K 4134 microphone at 70 kHz.
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calculated and measured data shows that the influence of the

very deep backchamber in the MEMS measurement micro-

phone it is not so important. Presumably, the shorter back-

chamber is responsible for the slight overdamping of the

proposed MEMS microphone.

Now, by using the given formulas, Eqs. (25), (28), and

(29), we can give evaluation of the thermal noise. Thus, we

obtain Racs ¼ 2.97 � 108[Ns/m5] for the mechanical resistance.

This gives a mechanical thermal noise of 21.8[dB(A)] which

compares well with the values 20:8� 21:7½dBðAÞ� given in

Table IV in Ref. 12 for the Thermal noise for B&K MEMS

measurement microphones.

C. The displacement of membrane

The paper by Lavergne et al.13 contains the displacement

field of the B&K 1/2 in. microphone obtained experimentally

using a scanning laser vibrometer. Figure 6(a) shows the dis-

placement field of the membrane of the B&K 4134 microphone

at 40 kHz, and the same field measured at 70 kHz is shown in

Fig. 7(a). Both figures are taken from the cited paper. The dis-

placement field of the membrane of the same microphone and

for the same frequencies resulted by using the numerically

obtained reaction pressure coupled with the numerical integra-

tion of the membrane equation are shown in Fig. 6(b) (for

40 kHz) and Fig. 7(b) for 70 kHz. In both cases the calculated

values look very similar to the measured displacements.

VII. CONCLUSIONS

The main result of this work is the determination of the

reaction pressure on the diaphragm due the air domain Dair

underneath it by using a numerical approach based on the fi-

nite element method. Afterwards, the membrane displace-

ment can be obtained analytically or numerically. In both

cases the results are in very close agreement. The method is

applied to determine the sensitivity and the mechano-

thermal noise of the classical B&K 4134 1/2-inch micro-

phone. Also, in the last section the displacement field of the

membrane of the B&K 4134 microphone is determined for

the frequencies 40 kHz and 70 kHz. The results compare

favorably with the measured values published in the litera-

ture. The paper also proposes a new design, completly

micromachined, (the chip including also the back-volume)

of the B&Kl/4-inch MEMS measurement microphone. De-

spite the fact that this new design has a backvolume only 0.8

[mm] deep as compared with 6.4[mm] of the B&K micro-

phone its mechanical response fits very well the measured

values published in the literature.
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